
J .  Fluid Mech. (19741, vol. 65, part 3, p p .  461-480 

Printed in Great Britain 

461 

Symmetrical flow past a uniformly accelerated 
circular cylinder 

By W. M. COLLINS AND S .  C. R. DENNIS 
Department of Applied Mathematics, University of Western Ontario, 

London. Canada 

(Received 15 August 1973) 

The flow normal to an infinite circular cylinder which is uniformly accelerated 
from rest in a viscous fluid is considered. The flow is assumed to remain sym- 
metrical about the direction of motion of the cylinder. TWO types of solution are 
presented. I n  the first an expansion in powers of the time from the start of the 
motion is given which extends the results of boundary-layer theory by taking 
into account corrections for finite Reynolds numbers. Physical properties of the 
flow for small times and finite but large Reynolds numbers are calculated from 
this expansion. In  the second method of solution the Navier-Stokes equations 
are integrated by an accurate procedure which is a logical extension of the solu- 
tion in powers of the time. Results are obtained for R2 = 97.5, 5850, 122 x lo3 
and 00, where R is the Reynolds number. This is defined as R = 2u(ub)*/v, where 
u is the radius of the cylinder, b the uniform acceleration and v the kinematic 
viscosity of the fluid. The methods are in good agreement for small times. 

The numerical method of integration has been carried to moderate times and 
various flow properties have been calculated. The growth of the length of the 
separated wake behind the cylinder for R2 = 97.5,5850 and 122 x 103is compared 
with the results of recent experimental measurements. The agreement is only 
moderate for R2 = 97-5 but it improves greatly as R increases. The numerical 
integrations were continued in each case until the implicit method of integration 
failed to converge, which terminated the procedure. A secondary vortex appeared 
on the surface of the cylinder for the case R2 = 122 x lo3. 

1. Introduction 
The initial motion of a viscous incompressible fluid normal to a cylinder of 

infinite length and arbitrary cross-section has previously been treated using 
unsteady boundary-layer theory. Blasius ( 1908) considered the general problem 
for two cases of motion from rest. In  the first the body is started impulsively 
and then moves with constant velocity, and in the second i t  is accelerated 
uniformly. Two approximations to the initial flow were obtained in the first 
case and three in the second. A third approximation was subsequently given 
for the impulsively started case by Goldstein & Rosenhead (1936). The theory 
has been generalized to other types of variation of the initial velocity of the 
cylinder by Gortler (1944, 1948) and by Watson (1955). In  all cases the method 
of procedure was to obtain successive approximations which form 8 series in 
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powers of the time from the start of the motion. The leading term is valid for 
all values of the Reynolds number R, but subsequent terms in the expansion are 
valid only in the case R -+ 03. 

Recent work by Wang (1967) and Collins & Dennis ( 1 9 7 3 ~ )  has extended the 
theory for an impulsively started circular cylinder to finite values of R by de- 
termining corrections of second and higher orders valid for large R. These ex- 
tensions are based on the full Navier-Stokes equations rather than the boundary- 
layer equations. All the series expansions are, however, limited in validity to 
small times. Collins & Dennis (1973 b )  made a numerical extension of the method 
of expansion in powers of the time for an impulsively started circular cylinder 
by using an implicit time-dependent numericalintegration procedure. In  this way 
accurate numerical solutions of the Navier-Stokes equations were obtained up to 
quite moderate times over a wide range of Reynolds numbers. The calculated 
results were found to agree well with previous numerical and experimental work. 

In  the present paper the methods of expansion in powers of the time and 
numerical integration are both applied to the case of the uniformly accelerated 
start, the second of the cases treated in detail by Blasius (1908). Higher-order 
corrections to boundary-layer theory do not appear previously to have been 
considered for this problem and neither does the question of extending the 
boundary-layer result's beyond the first three terms of the expansion in powers 
of the time previously given by Blasius (1908). There also do not appear to be 
any previous numerical solutions of the Navier-Stokes equations in this case. 
Numerical work on this problem is of current interest in view of the recent 
experiments described by Taneda (1972). In these experiments the time of 
separation of the flow and the subsequent growth of the separated wake have 
been measured over a range of Reynolds numbers. Other properties of the flow, 
such as the appearance of secondary vortices a t  high Reynolds numbers, were 
also observed. Separated flows of this nature are of fundamental importance and 
the present calculations provide the opportunity of giving theoretical con- 
firmation of these observations. 

Detailed numerical calculations are given for the cases R2 = 97.5, 5850 and 
122 x 103 and also for the boundary-layer case R = co. The finite values of R 
correspond to three cases considered experimentally by Taneda ( 1972). The 
numerical integrations are independent of the expansions in powers of the time 
and are carried out to times well beyond the range of validity of these expansions. 
It is therefore possible to use the numerical integrations to check the series 
expansions at  small times. The results for R = co are found to verify the extensions 
of the boundary-layer results of Blasius (1908) given by the series expansion and 
the results for finite Reynolds numbers check well with the corrections of second 
and higher orders. 

2. Basic equations 
Modified polar co-ordinates (&O)  are used, where ( = log(r/a) and a is the 

radius of the cylinder, with the centre of the cylinder its origin. At time t = 0 the 
cylinder starts to move in the direction B = 7r with uniform acceleration b. 
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I f f  and 5' are the stream function and vorticity associated with the motion, 
we introduce the dimensionless functions $ and 5 defined by the equations 

Dimensionless radial and transverse components of velocity (u, w) are obtained 
by dividing the corresponding dimensional components by (ab)t. We then have 

and g = e - l ( z - z -  , 

where I,+ and 5 satisfy the equations 

and (4) 

Here r = ( b / a ) t t ,  R = 2a(ab)*/v, and v is the coefficient of kinematic viscosity. 
The boundary conditions for I- > 0 are that 

+ = a+/at = 0 when C; = 0 ( 5 )  

and e-6 + I- sin 8, e-6 a$/a8 -+ r cos 8 as -+ co. (6) 

The last conditions correspond to a uniformly accelerated stream relative to 
the cylinder a t  large distances from it. 

The flow is assumed to remain symmetrical about the direction of motion. We 
may therefore assume the expansions 

m m 

n=l n = l  
$ = C fn(g,7)sinn6, = gn(t,r)sinn6. (71, (8) 

This is the same form of solution as that adopted by Collins & Dennis (1973a,  b )  
and it is also generally consistent with the principle of the spectral methods 
recently discussed by Orszag (1970, 1971). If the expressions ( 7 )  and (8) are 
substituted in (3) and (4), sets of differential equations for the functions f n ( l ,  7) 
and gn(& I-) are obtained. These sets of equations can be written as 

a'?fn/al2 - n"f, = e25 gn 19) 

and 

where 

Here j = Im - nI and sgn (m - n) is equal to + 1 if m > n, - 1 if m < n and zero 
if m = n. 

The two sets of equations ( 9 )  and (10) hold for all positive integer values of n. 
They are the same equations as those which form the basis of the numerical 
integrations of Collins & Dennis (1973b) .  In  the present paper they are also 
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used to generate the series in powers of 7, so that all the details of the present 
work are contained in (9) and (10) and the boundary conditions. The latter are 
that 

fn = af,/a$ = 0 when 6 = 0, (12) 

e-6 fn -+ 76,) e-6 af,/a< + 76, as f: + co, (13) 

which follow from (5))  and 

which follow from (6))  where 6, = 1 and 6, = 0 ( n  f 1). A further condition which 
follows from (6) is that 5 -+ 0 as f: -+ 00, and hence each gn(6, 7) in (8) must satisfy 
the condition 

g n ( f : , 7 ) - + 0  as t-+co* (14) 

Finally, on multiplying (9) by e-,E and integrating from 6 = 0 to 6 = co, making 
use of both of ( 1 2 )  and (13), the condition 

may be deduced. This condition is used to replace (13), and the set of conditions 
(12)) (14) and (15) is sufficient to solve the problem. It may be shown, following 
Collins & Dennis ( 1 9 7 3 4 ,  that, provided that these three latter conditions are 
satisfied and that e2cgn( t ,  T )  is bounded as f -+ a3 for all n a t  any value of 7, 

then the conditions ( 1  3) are automatically satisfied. 
In  the initial boundary layer formed during a uniformly accelerated start 

it is known (Blasius 1908) that the boundary-layer thickness is proportional 
to k = 2(27/R)+ and that $ and 5 are proportional to ~k and 7k-1 respectively 
In order to deal with the initial flow we therefore make the transformations 

f = kx,  f n  = kTFn, g, = 7Gn/k (16) 

in the sets of equations (9) and (10). The first set becomes 

PFn/ax2 - n2k2Fn = e2kx B, 
and the second yields 

where S: is S, with fn replaced by F,, g, replaced by G, and 6 replaced by x. The 
boundary conditions become 

Fn = aF,/ax = 0 when x = 0, (19) 

G,(x,T)  -+ 0 as x+co (20) 

and /om e(2-n)kz Gn(x, 7) dx = 26,. 
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The initial solution is found by putting r = 0 (and hence k = 0) in (17)  and 
( 18) and in the condition (2  1). The set of equations ( 18) becomes 

- PG, + 2 x ~ - 2 G n  = 0. 
8x2 ax 

The only solutions which satisfy the conditions (20) and (21) are 

C,(x,O) = -8[x(l-erfx)-7~-~e-”~], Gn(x,O) = 0 (n = 2,3, ...). (23) 

The corresponding initial solutions of (17) subject to the conditions (19) are 

} (24) 
F,(x, 0) = +[x3(erf x - 1) + $x erf x + n-+{(x2 + 1) e-Z2 - I}], 

F,(X,O) = 0 (n = 2,3, ...). 

The expressions (23) and (24) are consistent with the first approximation to the 
solution of the boundary-layer equations given by Blasius ( 1908) for the uniformly 
accelerated case. The expressions are valid for any Reynolds number at the 
start of the motion, although only for vcry small times, particularly for low R. 

The first approximation to the stream function obtained from (24) gives rise 
to an initial approximation to the dimensionless transverse velocity component 

(25) 
given by 

This is consistent as x -+ co with the transverse velocity component of the corre- 
sponding potential flow evaluated a t  the cylinder surface. The initial approxima- 
tion to the radial velocity component corresponding to (24) is of order k in the 
boundary layer but is not consistent as x + 00 with the radial velocity component 
of the corresponding potential flow at the cylinder surface. An approximation 
to the initial stream function which rectifies this situation and which tends to 
a uniformly accelerated stream as [ + co can be found by obtaining the solution 
of (22) which satisfies (20), adjusting the constant of integration to satisfy the 
full equation (21) with k + 0, and finally substituting in the full equation (17), 
again with k + 0, and integrating subject to (19). The procedure is similar to 
that already given by Collins & Dennis (1973a, p. 60). 

In  the present paper the set of equations (23) is used to give initial conditions 
for the numerical solution of the sets of equations (17) and (18) subject to the 
conditions (19)-(21). The method of solution is that given by Collins & Dennis 
(1973b) and will be referred to briefly later. It is also possible to obtain further 
approximations to the flow, valid for small T and large R, from (17) and (18). 
These are of some theoretical interest but they also have practical value in that 
they may be used to check the numerical procedure a t  small values of T. These 
approximations will now be described, but only briefly since they can also be 
developed by direct extension of the methods given by Collins & Dennis (19734. 

v = 7[ - 2 erf x + 4x2( 1 - erf x) - 477-4, e-2z] sin 8. 

3. Expansion in powers of k and T 
If R is large and 7 small then k is small and it is found to be possible to expand 

the functions Fm(x, 7) and G,(x, 7) which satisfy (17)  and (18) as power series in k. 
It is then found that the functional coefficient of each power of k can itself be 

30 F L M  65 
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expanded as a power series in 7 in which only even powers of r occur. This is 
consistent with the successive approximations obtained by Blasius ( 1908) in 
the method of solution given for the boundary-layer equations ( k  = 0)  in the 
case of a uniformly accelerated cylinder. In the present paper the same structure 
is found to hold for higher powers of k. We may therefore write 

These are substituted in (17) and (18) and the exponentials which occur are 
expanded in powers of k. If the coefficients of each term kir2i are equated to zero, 
sets of equations for the functions P$i)(x) and G$i)(z) are obtained. These are 
quite complicated in general and will not be given in detail. 

Boundary conditions follow from (19)-(21). The functions P$j)(z) must 
obviously individually satisfy (19) and the functions G$?)(x) must satisfy (20). 
A set of conditions corresponding to (21) may be obtained by substituting (27) 
in the integral, expanding the exponential in powers of k and then equating the 
coefficients of each term kir2j on either side of the equation. The general form of 
these conditions will again not be given, but it may be noted that the only 
inhomogeneous condition for the functions G$i)(x) which arises is for the case 
i = 0 , j  = 0, n = 1 and that the function GIo*o)(x) which satisfies it is the function 
G,(z, 0) given in (23). Brief details of the procedure for obtaining solutions will 
now be given, together with a few exact solutions obtained. In  describing the 
procedure it is convenient to suppress the superscripts and denote G$i)(z)  simply 

On substitution of (26) and (27) in (18), it  is found that the function G$f)(x)  
by Gn(x). 

satisfies an equation of the form 

Gk + ZXGA - 2( i  + 4j + 1) G, = T,(x),  (28) 

where a prime denotes differentiation with regard to x. The problem of generating 
solutions of (28) for given i, j and n is always one of successive approximation. 
Thus for fixed i, solutions for all appropriate n can be obtained successively for 
increasing j, since T,(X) depends only on previously determined functions and 
is thus known completely at each value ofj. We require G,(x) to vanish as x -+ 00 

and an appropriate solution of (28) is 

G,(x) = A,e-tx2 D,(24x) + G:(x), (29) 

where GZ(x) is any particular solution of (28) which vanishes as x -+ m. Here 
D, is the parabolic cylinder function with h = - 2 - i - 4j, and A, is a constant 
to be determined. Once G:(x) has been determined, A ,  is found by substituting 
(29) into the appropriate condition deduced from (21) and performing the 
necessary integrations. Finally, the corresponding function P$f)(x)  in the ex- 
pansion (26) is found by substituting (29) into a second-order differential equa- 
tion deduced from (17) and integrating twice subject to (19). 
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Exact solutions can be obtained for a few of the functions G:(x), but exact 
analysis cannot be carried very far. First, the functions rn(x) rapidly become 
complicated as i andj  increase. The problem of finding GE(x) is then very tedious. 
A second reason is that, whereas for smallj all but the first few r,(x) are identically 
zero, which makes GE(x) zero also, as j increases the number of non-zero rn(x) 
also increases and there are more G:(x) to be found. It is much easier to continue 
the process by numerical methods by computing each r,(z) and G: (x) numerically. 
The procedure used to determine numerical solutions of (28) which satisfy the 
required conditions is virtually identical to that described by Collins & Dennis 
( 1 9 7 3 ~ )  p. 67). The same grid size 0.05 was used, and also the same value x = 6 
at which the approximation to the condition at  infinity was assumed. 

4. Detailed terms in the expansion 
Terms in the series (26) and (27) up to and including the terms in k3 have been 

calculated, mostly by numerical methods. For i = 0 (the boundary-layer case) 
the terms have been calculated up to j = 7 ,  for i = 1 up to j = 6, for i = 2 up 
to j = 5 and for i = 3 up to j = 4, in all cases inclusive. The details are now 
given for each power of k. 

(a) i = 0. The solution forj  = 0 is given by (23) and (24). Forj  += 0 the condition 
on the function G$i)(x) which corresponds to (21) is 

lorn GFi)  (2) dx = 0. (30) 

For j = 1 the equations of type (28) derived from (18) have r,(x) = 0 for all n 
except n = 2. In  this case 

r2(x) = +2-[4x3 erf x( 2 - erf x) - 4x3 + 2n-tf 1 - erf x) 
-n-t(10x2+ 1)  ecZ8erfx+2n-*(5x2- 1) e-"'- 6 7 ~ - ~ z e - ~ ~ ~ ] .  (31) 

We then find 

Gior1)(x) = (4x5+20x3+ 15x)(A +Berfx)-$x(4x4+4x2+3)(erfx)2 

- ( y x 3 +  16x-~7~-*)er fx-@rd(8x~+2x~+ l)e-z2erfx 

+ n-4[4Bx4 + ( 18B - %E-) x2 + (8B - Zg-)] e-za 

( 32) + 32.~3 + 8x - 32n-& - &n-lx( 2x2 - 1) e-239, 
1 5  3 

where A = - 6 4 1 2 2 5 ~  and B = 8 + 641225n. The general form of the equations (17) 
and the conditions (19) for the functions F"',".)(x) are respectively 

FL = G,, Fn(0) = FA(O) = 0 (33% b )  

and hence the corresponding function PL0,l)(x) is obtained by integrating (33a) 
twice subject to the initial conditions. The precise expression will not be given. 

For j = 2, . . . , 7  the solutions of (28) and corresponding solutions of (33) have 
been obtained using numerical methods. Each solution of (28) must vanish as 
x + CQ and satisfy (30). The values of n associated with each j for which r,(x) 
is not identically zero are n = 1, 3 for j = 2, n = 2 , 4  for j = 3, n = 1,3,5 for 
j = 4 ,  n = 2 , 4 , 6  f o r j = 5 ,  n =  1 , 3 , 5 , 7  f o r j = S  and n = 2 , 4 , 6 , 8  f O r j = 7 .  

30-2 
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These give the only non-zero terms in the expansions (26) and (27) as far as the 
term in 7-l4 for the case i = 0. 

( b )  i = 1. This corresponds to the first-order correction to boundary-layer 
theory. In  this case the condition deduced from (21) is 

/om{Gp*n(x) +(2-n)xG$i)(x)}dx = 0. (34) 

For j = 0 the only r,(x) in (28) which is not identically zero is that for n = 1, 
given by 

From this we obtain 
rl(x) = 327r-$xe-”’. (35) 

Gil,O)(x) = ( 2x2 + I)  ( 1  - erf z) - 677-4x e-”’. (36) 

.FE = G$j)+2~G$i) ,  F,(O) = PA(0) = 0. (37) 

The equation and initial conditions for the functions FE, j)(z) are respectively 

From these we obtain 

Ff>O)(x) = ix4(erf x - 1) + &7r-*( 14x3 - 13x) e-”’ 

+ $ r 4 x  + $x2( 1 - erf x) - 4 erf x. (38) 

It becomes too complicated to obtain further terms by exact analysis, but 
terms withj = 1 up to j = 6 have been tabulated using numerical methods. The 
values of n associated with each value of j for which the r,(x) in (28) are not 
identically zero are exactly the same as for the case i = 0,  and a similar situation 
exists for the cases i = 2 and 3 to follow. 

(c) i = 2. There is hardly any need to give further equations and conditions 
satisfied by these functions, except that it may be noted that this case is the 
first one in which the terms 82$/802 in (3) and a2c/802 in (4) start to exert an 
influence. An exact solution has been found for the term withj = 0 in which the 
only non-zero r,(x) in (28) is 

rl(x) = - 8n-t(4x4 - 2x2 - 1) e-”’. 

GI2>O)(x) = x($x2+ I)(erfx- l ) + Q 7 r - h ( 1 2 ~ ~ + 8 x ~ -  I)e-”’ 

(39) 

(40) 

This leads to the expressions 

and 
F ~ ~ ? O ) ( X )  = &#(erfx- i)+Qxs(erfx+ I) +&erfx+&7~-4 

x (42x4+ 19x2 - 1) e-”’- Z7r--*x2 3 +&yr-$. (41) 

(d )  i = 3. An exact solution has been obtained for j = 0. The non-zero r,(x) 
Numerical solutions have been obtained for the terms withj = 1 up to j = 5. 

in (28) is 

This leads to the expressions 

rl(x) = (2x2 + I )  ( I  - erf x) + $n--i( 12x7 - 26x5 + x3 - 6%) e-xa. (42) 

Gi390)(x) = &( 12x4 + 20x2 + 1) (1  - erf x) - &T-* 

x ( 32x7 - 16x5 + 2x3 - 1 lx) e-”’ (43) 
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and 

F$3,0)(z) = h ( 4 2 2 X 6 - 4 5 ~ ~ )  (erfz- 1) +&x2(1 -5erfx)+n-h 

x ($z2-L) 6 0  +g:erfz+2&n-)(3629x5- 212x3- 3477~) e-Lt2. (44) 
Numerical solutions have been obtained for all non-zero terms corresponding to 
j = 1 up to j = 4. One advantage of obtaining at least one exact solution for 
each value of i is that it gives a t  least some check on the numerical procedure. 
The exact solutions were checked numerically and the comparison was found to  
be satisfactory. 

5. Numerical integration procedure 
The expansions in powers of k and T enable properties of the flow t o  be cal- 

culated for large R and small T ,  although nothing precise can be said about the 
region of convergence of the series. In  order to calculate the flow for any Reynolds 
number and large enough time, in particular for some of the experimental studies 
described by Taneda (1972), the numerical method of integration given by 
Collins & Dennis (19736) may be used. The solution is started by integrating 
(17) and (18) using (23) as an initial condition and (19)-(21) as boundary con- 
ditions. Then, a t  some later value of T after the boundary layer has thickened, 
the integrationis switched to (9) and (10) and continued subject to the conditions 
(12), (14) and (15) in the natural space co-ordinate g. An implicit method of 
integration of Crank-Nicolson type is used, and a given approximation to the 
flow is obtained by truncating the series (7) and (8). This is done by setting to 
zero all functions &(<, 7) and gn([ ,  7) for n > no, where no is an integer defining 
the order of the truncation. Thus in practice 2n0 functions are determined from 
(9) and (10) [or (17) and (18)]. 

The essential details of the procedure have been described by Collins & Dennis 
(19736). As in the case of the impulsive start, only a few functions Pn(x, T )  and 
Gn(z, T )  are needed to describe the motion for small Tin view of theinitial structure 
given by (23) and (24). More functions are added as the integration proceeds and 
the parameter no actually refers to the maximum number of terms used in each 
of the series (7) and (8) during the integration. It is also necessary to use a small 
time step for small 7. The reason is the same as in the impulsively started case. 
The series expansions of Fn(x, T )  and G,(x, T )  involve odd powers of k and hence 
all derivatives withrespect to T after some stage are singular at T = 0. The problem 
does not arise in the boundary-layer case, where k = 0. For the cases of finite R 
considered the integrations were all started by taking 10 time steps H = 10-4 
followed by 24 steps H = bringing the integrations to 7 = 0.025. The in- 
tegration was then continued using a step H = 0.0125. The grid size in the x 
co-ordinate was taken as h, = 0.05 in all cases. The maximum value of x in the 
field (at which the condition Gn(x, 7 )  = 0 is assumed) was taken as x = 8. 

The integration is switched from (17) and (18) to (9) and (10) a t  some time 
7 = T ~ .  The choice of T~ is empirical, but since the same grid points in both the 
x and E co-ordinates must be used, the grid size h in the co-ordinate must be 
such that h = 2(27,/R)*h,. In  fact T~ is merely chosen so that h is reasonably 
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RZ 7 M  7 0  h CM 720 

97.5 9.8 0.7875 0.0400 6.39 20 
5850 4.7 4.0375 0.0325 5.20 20 

20 122 x 103 3.2 
20 03 1.6 

- - - 
- - - 

TABLE 1. Parameters used in the numerical solutions 

small. The integration is then continued in the co-ordinates 6 and 7 until some 
final time T = T~ is reached. Integrations were carried out for the three finite 
values of R given by R2 = 97-5, 5850 and 122 x lo3 and R = co. In  each case the 
value 7M was determined by the fact that the implicit method of integration 
failed to converge. Failure at T = 7M does not invalidate the results for 7 < 7M 
in view of the step-by-step nature of the calculation. The accuracy criterion for 
convergence for all 7 < 7M was the same as that given by Collins & Dennis 
(1973b, p. 112). 

Values of the various parameters used in the calculations are shown in table I. 
The value of the field length is denoted by = E M .  This is the value where the 
condition qn(<, r )  = 0 is assumed. The parameter no is the maximum number of 
terms in ( 7 )  and (8) employed during the integration, which is actually the 
number employed a t  the final time T = T ~ .  In  the case R2 = 122 x 103 the 
integration was terminated while still in the boundary-layer co-ordinates. 

6.  Results 
We shall first give results obtained from the series expansions in powers of k 

and r ,  followed by results obtained from the purely numerical method. For the 
case R = 00, Blasius (1908) obtained two approximations to the time of separa- 
tion. Separation first occurs at the rear generator. It occurs a t  a time 7 = T, say, 
defined by the condition aC/a8 = 0, when x = 0 and 8 = 0. From the expansion 
(27) in powers of k and 7 we can obtain various approximations to T by in- 
vestigating the roots of the equation 

n1 il il 

n=l i = o  j = o  x x x nkiT2iG$,i)(O) = 0. (45) 

Here i, and j, correspond t o  the total number of terms taken in (27) and the 
sum over n corresponds to all the non-zero terms G$i)(x) associated with each 
value of i and j. The boundary-layer case corresponds to i, = 0 and successive 
approximations to T are obtained by taking increasing values of j,. 

If we takej, = 1 in the boundary-layer case we obtain 

T2 = 4507~/ (465~-  256) = 1.173, 

which is in agreement with the first approximation given by Blasius (1908). 
The second approximation (j, = 2 )  gives T 2  as the positive root of the equation 

0.5088T4 f 3*8466T2 - 4.5135 = 0. 
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2.1 2 3 4 5 6 7 

T2 1.0324 1.0342 1.0436 1.0460 1.0460 1.0460 

TABLE 2. Approximations to  the time of separation for 
the boundary-layer case (k = 0) 

This gives T2 = 1.032 compared with T2 = 1.038 calculated by the approxima- 
tion of Blasius ( 1908). Further approximations corresponding to values ofj, from 
3 to 7 have been calculated by the present method and these are shown in 
table 2 .  

The variation of T 2  with R can be investigated by finding the appropriate root 
of (45) with i, f 0. Calculated results for Reynolds numbers down to R = 300 
are shown in figure I, where T 2  is plotted against l/log,,R. In  these results all 
the computed terms G$ j)(x) up to j = 7 when i = 0, j = 6 when i = I, j = 5 when 
i = 2 and j = 4 when i = 3 were used. The values of n associated with each value 
of j have already been given. The range of R for which these results are valid 
is not known but some evidence is available from the results of the fully 
numerical calculations which are given in the same diagram. 

A dimensionless drag coefficient C, is defined by C, = D/pa2b, where D is the 
total drag on the cylinder. It may be expressed as 

in which the first term in the integral gives the friction drag coefficient C, and 
the second the pressure drag coefficient, where C, = C'+Cp. Both of these 
coefficients can be calculated as series in powers of r and k from the present 
results. It is found, as far as the terms calculated, that 

C, = 1~(~/2R)t{4*5135 + k- 0.094k2 + 0*031k3 + (0.0036 + 0.23% 

- 0*938Fc2 + 2*705k3) r4 - (0.0045 - 0.053k + 0*459k2 - 2.203k3) 7' 

+ (0.00029 + 0*00065k) r I 2  + O(T'~)} ,  (47) 

+(0*148k-2*110k2+ 1 1 ~ 3 0 7 k 3 ) ~ 8 + 0 ~ 0 1 3 3 k ~ 1 2 + O ( ~ 1 6 ) } .  (48) 

Cp = ~ ~ ( 8 ~ 0 + 4 ~ 5 1 3 5 k + ~ 2 - 0 ~ 0 9 4 k 3 + ( l * 2 5 6 k - 4 * 7 7 7 k 2 +  13*884k3)~4 

It may be seen that the drag coefficient is initially constant and equal to 2n, 
in agreement with boundary-layer theory. 

The variation of RtC] with r is shown for the boundary-layer case (k = 0) in 
figure 2. In  figure 3 the variation of R-*C with r is shown over the whole cylinder 
surface for the boundary-layer solution. The results exhibited in figures 2 and 
3 are for the range of values of r for which they compare satisfactorily with 
results derived from the numerical procedure described in the last section. Further 
properties of the flow can be obtained from a knowledge of the vorticity and its 
derivative with respect to x at the surface of the cylinder. Numerical values of 
GFf) (x )  and its derivative with respect to x at x = 0 are given in tables 3 and 4. 



472 W .  N .  Collins and S. C. R. Dennis 

R 

FIGURE 1. Variation of the separation time T with I/log,, R. -, series 
solution in powers of 7 ;  0, numerical method. 

The fully numerical method of solution was carried out for 

R2 = 97.5,5850,122 x lo3 and co. 

In  esch case a time r = 7M (given in table 1) was reached at which the implicit 
method of integration failed to converge. The value of rJ, decreased with in- 
creasing R. The same phenomenon was noted by Collins & Dennis (1973b) for 
the case of the impulsive start. As in that case, the breakdown could possibly 
be associated with some type of instability in the flow. It is possible that rM 
could be increased by the use of improved iterative methods such as those sug- 
gested by Israeli (1970, 1972) but this has not been considered. The three finite 
Reynolds numbers considered correspond to the three cases a = 2x2 = 195,11700 
and 244 x lo3 for which experimental results have been described by Taneda 
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I I I I 

FIGURE 2. Variation of R*C, with 7 for the boundarv-laver solution 

7 

'1 1 

FIGURE 3. Variation of R-aC over the surface of the cylinder for the boundary-layer soh. 
tion obtained from the series in powers of r .  
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i = O  i = l  i=2 

4-5135 1~0000 - 0.0940 
- 1.9233 3.1191 - 5.7084 

0.0036 0.2380 - 0.9385 
-0.1708 1.4940 - 7.4925 

0.0165 0.2431 - 2.4438 
- 0.0063 0.3843 - 4.4246 
- 0.0045 0.0533 - 0.4592 

0-0053 0.0574 - 1.5428 
0.0054 - 0.0048 - 1.1446 

- 0.0017 0.0336 - 0.5409 
0-0002 - 0.0250 0.0071 
0.0020 - 0.0512 0.1994 
0-0003 0.0006 

- 0-0001 0.0069 
- 0.0005 - 0.0257 

0.0003 - 0.0215 
0.0002 
0.0002 

- 0~0001 
0~0000 

TABLE 3. Numerical values of G:j)(O) 

i=3 

0.0312 
11.178 
2.7050 

30.396 
14.048 
32.91 
2.2028 

24.559 
.15*168 

i = o  i = l  1=2 

- 8.0000 
8.0000 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 4.51 35 
- 10.526 
- 1.2556 
- 5'2467 
- 1.7027 
- 1.6483 
- 0.1477 
- 0.5396 
-0.1025 
-0.1188 

0.1284 
0.1941 

- 0.0133 
- 0.0252 

0.2014 
0.1040 

- 1.000 
21.451 
4.7769 

32.742 
14.884 
22.119 
2.1098 

10.565 
6.8908 
3.0632 
0.3797 

- 0.5614 

1=3 

0.0940 
- 44.894 
- 13.884 
- 144.99 
- 84.335 
- 177.588 
- 11.307 
- 121.05 

103.8 

TABLE 4. Numerical values of [dG2 ' ) ld~]~=, ,  
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0 1 2 3 
7 

FIGURE 4. Variation of the drag coefficient GO with 7. 

-, numerical method ; - - -, series. 

(1972). Numerical data relating to these experiments have recently been pub- 
lished by Honji & Taneda (1972) and the comparisons of the present paper are 
based on the latter. The main property measured was the development with time 
of the twin pair of vortices formed a t  the rear of the cylinder. 

The frictional and pressure drag coefficients defined in (46) are found to be 
given by the formulae 

C' = 27~R-'g,(O,7) = ;rr(7/2R)*G1(0,7), 

C, = - 27~R-l[t3g~/Q-,, = - $T[~G,/~Z],=,. 
(49) 
(50) 

These quantities have been calculated from the numerical solution, and in 
figure 4 the variation with 7 of the total drag coefficient CD = C,+C, is given. 
Results calculated from the series (47) and (48) are also shown. The diminishing 
usefulness of the series method as R decreases is clearly seen, but nevertheless 
the corrections to boundary-layer theory given by the method are of some value. 
The variation of the angle of separation Os with 7 is shown in figure 5 for the 
Reynolds numbers considered. Calculated values of the time of separation T are 
given in table 5. An extra value was calculated (corresponding to R = lo4) to 
help to define the range of validity of the curve in figure 1. 

Comparisons of the growth of the length of the vortex pair obtained from the 
numerical solutions with the data of Honji & Taneda (1972) are given for the 
three finite Reynolds numbers in figures 6 (a)-(c). Here L(7) is the dimensionless 
length of the separated region measured in radii along the downstream axis of 
symmetry from the rearmost point of the cylinder. The Reynolds number range 
covers the whole range of the data given by Honji & Taneda (1972) and the 
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e a  
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FIGURE 5. Variation of the angle of separation 0, with 7. 

R2 97-5 5850 1 2 2 ~ 1 0 ~  108 03 

Numerical solution 2.460 1-501 1.245 1.065 1.023 
Series solution - - 1.421 1.068 1.023 

TABLE 5. Calculated values of the time of separation T 

I I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 

7 2  

FIGURE 6 (a). For legend see facing page. 

I0 
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7 2  

FIGURE 6 .  Variation of the wake length L as a function of 72 for (a) R2 = 97.5, ( b )  
RZ = 5850, (c) R2 = 122 x lo3. Numerical solution: __ , present study. Experimental 
measurements: ., Honji & Taneda (1972). 

degree of agreement is variable, being barely satisfactory at  R2 = 97.5 to good 
a t  R2 = 122 x 103, It is difficult to identify the cause of the discrepancy a t  
R2 = 97.5, but there is no obvious reason why the present results should be 
less accurate at lower Reynolds numbers. The main source of the discrepancy 
appears to lie in a much earlier separation of the flow in the experimental study 
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FIGURE 7.  Variation of 5 over the surface of the cylinder for 
(a) R2 = 97.5, ( b )  R2 = 5850, (c) R2 = 122 x i03. 

than in the calculations. The value of T obtained for R2 = 97.5 in the calculations 
cannot be checked by the power-series method, but since only a few terms of the 
series (7) and (8) are significant when separation occurs, the estimate of T is 
thought to be accurate. 

The development with 7 of the dimensionless vorticity 5 over the surface of 
thecylinderisshownforthecasesR2 = 97.5,5850and 122 x 103infigures7(a)-(c). 
For the lowest value of R the variation of cin the region of separated flow exhibits 
a single local minimum for the entire range of 7. This is also true in the case 
R2 = 5850 for small 7, but a t  about 7 = 3.5 a local maximum develops in the 
region of separated flow 0 < 0 < BS and the vorticity in this region remains 
distorted until the final time T~ = 4.7. A similar situation occurs in the solution 
for R2 = 122 x lo3, but in this case the local maximum in the separated region 
starts to occur a t  an earlier value of 7 and develops to such an extent that a 
secondary vortex appears in the region 0 < 0 < OS a t  about 7 = 3. The integration 
terminated soon after (at 7 M  = 3.2) because of its failure to converge. Taneda 
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(1972) has stated that secondary vortices were observed to occur experimentally 
for R2 > 25 x lo4 a t  a value of r equal to about 4. 

Finally, for the boundary-layer case (R = 00) the integration could not be 
continued beyond r = 1.6. For values of r up to r = 1.4 the results of the 
numerical integration were found to be in good agreement with the results 
obtained from the series in powers of r. For example, the numerical solution gives 
results for the variation of R-85 over the cylinder surface which are in complete 
agreement with the results of figure 3. Other properties show a similar good 
agreement. 

This work was supported by grants from the National Research Council of 
Canada. 
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